If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15=6x^2
We move all terms to the left:
15-(6x^2)=0
a = -6; b = 0; c = +15;
Δ = b2-4ac
Δ = 02-4·(-6)·15
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*-6}=\frac{0-6\sqrt{10}}{-12} =-\frac{6\sqrt{10}}{-12} =-\frac{\sqrt{10}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*-6}=\frac{0+6\sqrt{10}}{-12} =\frac{6\sqrt{10}}{-12} =\frac{\sqrt{10}}{-2} $
| d=150+50 | | p^2-8p+41=0 | | -2(x)=-7x+25x+10 | | x/3+2x/5=55 | | -3x=68=x+32 | | 2n+6-n=24 | | -3/4c=9 | | -3x+5=-8x-10 | | 72+x=30 | | 105-7x/5=77 | | n=4+12 | | k4 =116 | | (10x+7)=(7x | | -2(n-6)=14 | | 2x+5(x-7)=42 | | 45+6x+3/2x=180 | | 2/8n-4=4 | | 4(1+7b)=-18 | | 8-3x+2x=2x-24+2 | | 3(n+9)=-21 | | w-48=-93 | | 14=-2n-12 | | 4x+51=9x+6 | | 8-+2x=2x-24-+2 | | 18e-18=10e+12 | | -18w=-8w-20 | | (3+z)/4+5=19 | | -2x+2=2+2x | | 3x+2=-13+6x | | X+5=3x+-1 | | -8d-6+3=26 | | 3x+29=6+8 |